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TECHNICAL PAPER

PLATE AND BUTT-WELD STRESSES BEYOND ELASTIC LIMIT,
MATERIAL AND STRUCTURAL MODELING

I. INTRODUCTION

The solid rocket booster (SRB) aft skirt is a 2219-T87 aluminunl, high perl\wmance structure that

supports the entire shuttle vehicle through stacking operations into liftoff. T\vo Ilight copies were tested

to revised operational loads, and both failed at the same weld location at considerably less load than the

estimated ultimate. Monitoring _,,au,,es_,. also indicated the failure strain to be much less than predicted.

This modeling and test prediction breakdown provoked an eflkwt to understand the related physics of

stresses beyond the elastic limit.

What makes the inquiry: of inelastic behavior so compelling is that all high performance structures

must embody this phenomenon in the ultimate safety factor analyses. Forty percent of the aft skirt

strength is sustained by material properties beyond the elastic limit, a region not too well understood.

To gain basic insights on inelastic structural behavior, an analytical modeling approach was

developed which incorporates nonlinear material properties with familiar linear strength of materials

method. Material properties through the inelastic range were modeled from uniaxial test data and were

applied to analysis of rectangular bars and plates subjected to tension, bending, and combined Ioadings.

Associated stress and strain equations were derived in sufficient detail for the collective understanding

and benefit of all interfacing disciplines, especially design, stress, materials, and test.

The analytical method is applicable to most strength of materials problems and may be extended

to some classical elasticity models. It should be especially applicable to combustion device structures and

aeroheated zones, where high temperatures decrease the elastic limit while extending the inelastic range

of materials.

Metallurgical discontinuity stresses resulting from dissimilarity of weld and parent material

properties beyond the elastic region are included. A previous paper 111 explored this phenomenon and in

this report is made consistent with the succeeding material and analytical modeling technique.

Of 24 structural failures in Marshall Space Flight Center (MSFC) programs, the average ultimate

test loading fell 15 percent below the predicted safety factor [2]. It is hoped that this paper will help to

better understand the inelastic failure of elementary structures through the analytical method, will

provide a quick backup analysis for comparing with new and existing computational methods, will

identify practical limitations, and will support safe design analyses and test data evaluations.



II. MATERIALS MODELING

Curve OACE of figure I typifies the stress-strain data obtainable from a uniaxial tensile test of a

polycrystalline material. Points A and E are the elastic limit and the ultimate stress properties, respec-

tively. Line OA is the elastic portion of the curve which depends on the resilience between molecules.

Plastic flow is the permanent deformation caused from displacement of atoms, or molecules, to new crys-

tal lattice sites. When the applied stress exceeds the elastic limit, elastic straining decreases while plastic

flow rate increases. The ratio of elastic strain and plastic flow defines the slope, and their change rate

characterizes the nonlinear property of curve ACE as it approaches full plastic state.

The area under the stress-strain curve OACE represents the total strain energy per unit volume of

the material. When the material is stressed inelastically to point A' and relaxed, it relaxes elastically

(same slope as OA) to a new origin point O' for total plastic strain of O-O'. The material takes on a

permanent set, and the strain energy represented by the area OACA'O' is not recoverable. Consequently,

the new stress-strain property is defined by O'A'E, and the elastic limit advances to point A'. The plastic

slip along the crystal boundary is directional, which transforms the isotropic material to anisotropic in the

next load cycle.

Current structural design practice is based on linear material properties in which the stress-strain

relationship to ultimate is defined by the slope of line OA extended to point B. Point B is equal to the

ultimate stress at point E. This assumption is rather conservative for local discontinuity stresses because

it embraces a small fraction of the total strain energy available for the ultimate safety factor. When opera-

tional loads on inventory structures are projected to increase beyond original design loads, it is prudent to

calculate a new safety factor using the total strain energy, in which the increased energy may be sufficient

to establish that actual margins are still within specifications.

The success of a nonlinear determination depends on the accuracy of the finite element method

(FEM) code and structural modeling, and on the understanding of results. Sometimes, stress results of

local areas from large commercial codes are so intricate and the mechanics so obscured that a hand analy-

sis is necessary to interpret the physics. Often, new codes and options are difficult to verify, and they

succumb to cookbook application. When this happens, a backup hand analysis of basic structural

elements for comparison and perception becomes essential, and its applicability depends on the sim-

plicity and compatibility of inelastic material expressions.
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Figure I. Design data from uniaxial test.
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A. Uniaxial Stress-Strain

Uniaxial tension tests are the simplest type for obtaining mechanical properties of structural

materials. Stress-strain material properties of commonly milled bars and plates are well defined and

widely published [3], but properties of specially processed materials, such as welds, castings, and forg-

ing, are usually developed by the user. Such was the case of the SRB skirt butt-weld which is a good

basis for this material modeling discussion. Properties defined and qualifications expressed are not

standard, but may provide guidelines for designing material model tests applicable to analytical
approaches.

Multipass butt-weld properties vary significantly with design geometry which influences the heat

intensity and distribution across the weld and into adjacent heat affected zones (HAZ). Obviously, the

stress-strain relationship across the weld width varies uniquely for each design and manufacturing

process and must be obtained from sample test specimen. If properties of the HAZ are required and the

width of the zone is less than the gauge length, similar properties in the adjacent overlapped zones must

be determined and separated from the gauge data through the rule of mixtures. All this points to the dif-

ficulty of not only obtaining weld properties, but the necessity of discussing the data with the intended
user.

The normal stress-strain test data for the SRB skirt analysis, presented in figure 2, was developed
from 24 specimens [4], using 0.125-in electrical strain gauges mounted at midwidtb on weld surfaces.

The data is the statistical average of the sample size and is preferred for analytical methods that are to be

used for tracking test instrumentation. Deviation of the data about the average is used to define the

A-basis ultimate properties required for design analysis and test margin predictions.
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Figure 2. Curve-fit to weld test data.
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Since stress is related to strain through material properties, and as stress increases beyond the

elastic limit, these properties change nonlinearly with stress. The simplest normal stress-strain model

representing these changes is a two-parameter curve-fit,

= as I' , (I)



where a is the strength coefficient and b is the strain hardening exponent. When b = I, the expression

reduces to Hooke's law of elasticity, and coefficient a is identically Young's modulus, E. When b = 0,

pure plastic flow occurs at constant stress, and the material is said to be perfectly plastic (appendix C).

The two parameter model is particularly compatible with the analytical method because material

properties expressed as coefficients and exponents of stress or strain are easily combined with stress and

strain variables of strength formulas through their coefficients and exponents.

A conservative material representation should curve-fit the origin, elastic limit, and ultimate

stress parameters without exceeding the area under the test data curve, as shown in figure 2. Data

required to determine the two parameters of equation ( ! ) are specified by properties at the two extreme

conditions of the inelastic curve: Young's modulus, E: elastic limit stress, erE;: ultimate stress, {r_: and

ultimate strain, at,,. The elastic limit stress, though difficult to isolate, is a more meaningful property in

the inelastic process than the yield point. If maximum stress of very ductile materials precedes fracture.

strains beyond maximum stress should be considered unstable, and the value at inception of maximum
stress is assumed ultimate stress.

A better midrange curve-fit would be possible by using the true strain rather than the suggested

engineering strain. However, the slight gain in accuracy would severely compromise the potential appli-

cation of the analytical process. Besides, the error decreases as the stress approaches failure. Since proto-

type test predictions require accurate midrange properties, a second set of materials models should be

derived between the elastic limit to 20 percent beyond. At the same time, effects of maximum expected

error should be weighed against effects of the coefficient-of-variation of material data which has been

reported to exceed 20 percent [4].

The hardening exponent of equation (l) may be calculated from

b = log(crt.#(rFD/log(eu*E/crr_t.), {2)

and the coefficient from

a = (r£L/(CrFL/E)I' (3)

Subsequent material models derived from simple uniaxial tension data are expressed in stress or

strain variables and cast in similar two-parameter form. This is a necessary condition for simplifying the

analytical process.

An A-basis strength of material is defined as having a 99-percent reliability taken at a 95-percent

confidence level. This tolerance limit is used for both elastic limit and ultimate strength. The A-basis

strength is calculated from referenced weld test data having average strength of 8"u = 48.6 ksi, standard
deviation of s = 1.6 ksi, and a factor of k = 3.18 for a 24 sample size. Applying these value.,, to the

statistical criteria,
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crL,= 6-ks , (4)

results in a design ultimate stress ot'o-_, = 43.5 ksi. The A-basis elastic limit stress is o'H. = 20.5 ksi. As

the number of test specimen increases, the k-factor decreases to the limit of 2.33, which has trades

implications as to the number of specimen required versus performance of the structure.

It must be pointed out that the material model specified above is compromised in three respects.

First, equation (!) assumes a nonlinear stress-strain relationship throughout. This analytical method is

definitely not applicable below the elastic limit, except as required to derive inelastic bending models. A

more accurate relationship would have split the curve-fit into two parts; a standard linear part having b =

I and a = E up to the elastic limit of 26.3 ksi followed by the nonlinear part. However, incorporating

this discontinuity in bending stress derivations would be extraneously complicated and will be shown to

be insignificant beyond the elastic limit for which it is intended.

Secondly, the stress-strain curve of figure 2 assumes a symmetric material. There is reason to

believe that most crystalline materials have different tension and compression elastic limits which may be

demonstrated in a pure bending experiment. However, this is an order of refinement which is not neces-

sary with current general developments.

Finally, it should be recognized that weld properties are not only manufacturing process

dependent, but are also dependent on the mass distribution of the adjoining material along the weld

length. If the weld is to join a highly sculptured forging, such as the skirt post, the heat sink will vary

accordingly, as will the weld and the HAZ properties. Then the materials representation and number of

models to be developed must be decided jointly by manufacturing and stress considerations. Does the

weld thickness, therefore weld-heat, taper along the length'? Does the maximum stress and weakest

expected weld occur at independent places along the weld length, etc.'? Similar questions may be asked

of forgings and castings properties.

B. Poisson's Ratio

All polycrystalline materials possess two elastic constants from which all other constants may be

derived. Young's modulus and Poisson's ratio may be obtained simultaneously from a simple uniaxial

test specimen. Poisson's ratio is defined as the ratio of unit lateral contraction and unit axial extension, i,t

= -e,./ex = -e:/e,., which suggests a volumetric relationship. When a material in uniaxial test is

extended, the space between molecules in the crystal lattice are displaced linearly causing a minute

volume increase. The new volume is related to the specimen dimensions and strains by

V = (L + Le,)(t + te...)(B + Be_-)

Substituting Poisson's ratio expressions for lateral stranns and ignoring high order terms, the volume

change relates to Poisson's ratio by



AV
- (l-2_)e._ .

V

In the elastic range, Poisson's ratio is a constant having a value between 0.28 to 0.33 for most

common materials, and 0.3 is used in most general analyses. When a specimen is extended beyond the

elastic limit, molecules that slip into new lattice sites cause no change in volume. Therefore, a totally

plastic Poisson's ratio engages in no volume change and should not exceed I-5, = 0.5. Consequently, as

the axial strain increases beyond the elastic limit, the volume change rate decreases and Poisson's ratio

approaches its maximum value.

Because the same molecular displacement process which occurs in the normal stress-strain

relationship also is volume related, it would seem reasonable to expect Poisson's ratio to be expressed

similarly to equation (1),

Ix = gel. (5)

Current practice is to express the Poisson's ratio nonlinearly with the secant modulus defined by

normal stress-strain data. Using data developed in figure 2 and equation (!), Poisson's ratio based on

secant modulus is

lib

o[:] (6)

where subscripts p and e refer to plastic and elastic properties, respectively, and E is Young's modulus.

This expression is adjusted to match the elastic Poisson's ratio with the elastic limit stress crEc through the

variable I-ZAgiven by,

IX,4 = IXPO'ELL a j - or_----_ "
(7)

Equation (6) is incompatible with the subsequent analytical method for reasons given in the above

stress-strain expression. However, the secant model is still prerequisite to calculate the Poisson's ratios at

the elastic limit stress I_Ec and at the ultimate stress I_u. Using stresses from equation (1) and Poisson's

ratio from equation (6), parameters of equation (5) are calculated similarly to the tension model:

f = Iog[p_U/_E.L]/Iog[(_U/CrEL],/I, , (8)

g = _EL/((rEL/a) fib (9)



Figure 3 presents the two constructed Poisson's ratio models discussed, based on uniaxial test

data of figure 2. Though common end conditions were imposed on both models, a deviation of up to l0

percent is noted at midrange between the two plots. This deviation may affect monitoring and evaluating

strain gauges on prototype structures. How much uncertainty is tolerated may be determined from sensi-

tivity analyses of specific structural environments. Poisson's ratio expressed by equation (5) is more

linearly related to stress and provides another option to correlate with actual test data.
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C. Failure Criteria

The total strain energy produced in multistress fields consists of energy causing a volume change

and energy causing distortion. Basis for the failure theory is that distortion energy is limited and that

hydrostatic strain does not cause failure. Therefore, hydrostatic strain is deleted from the total strain

energy [5]. The distortion energy theory of failure hypothesizes that a material will fail when the energy

of distortion of combined stresses achieves the same energy for failure in simple tension.

Using a two-dimensional stress field, the failure criterion is expressed by

,-)

-< cr + ;-cr,cr2 , (10)

where subscripts 1 and 2 refer to principal stresses. Roots of the characteristic equation formed from the

two-dimensional stress tensor,

(o-.,:_- h)

'T.lf2

=0,

define the inplane principal stresses,



er1.2 -- o2._.2+o'- --2-+1 V'(o'_.......+ er.) 2 - 4(o'_tr. - a',._)

Substituting these roots into equation (10) gives the biaxial stress failure condition,

tt U _ V'er_ +er_-%% + 3 _'.,_ . (11)

Shear stress is noted by -r, and cru is the maximum stress obtained from a uniaxial tension test. Note that

when biaxial normal stresses have unlike polarity, the induced distortion energy to failure increases.

When stresses have the same polarity, distortion energy decreases and is a capital benefit in pressure

vessel designs.

The three-dimensional failure criteria is

ff_ _ ffi+_2+ff3--_l_ 2-fflff 3-_2_ 3 ,
(12)

and

. - . . (x.i:-,.+ •cru <_ ; + er,. + tr:_- or.jr:, - er.,.tr, tr,.o. + 3 . T.L-+ 'r,_:). (13)

Of the total strain energy under the stress-strain curve of figure 1, the elastic strain energy com-

ponent, represented by the triangle OBD, provides the static strength of the material. What makes the

total strain energy important in the ultimate safety factor analysis is that local structural regions, having

stress concentrations exceeding the elastic limit, will flow and deform to allow peak stresses to be shared

by neighboring elastic regions. This benefit becomes obvious when comparing the limited elastic strain

OD with the available plastic strain DF. Analysis must assure that local flow does not lead to global

yielding or fracture.

D. Triaxial Stress-Strain

The inelastic stress-strain relationship may be developed from Hooke's law,

el - 1 [crt-I_,,(crz+tr3)]
EA

1 [o'2-1x,,(_q +or3)] (14)
_'2 -- EA

e3 - I [or3- I_,,(crl + or2)] ,
Ea



by replacing elastic constants with inelastic variables derived from uniaxial tests. EA is the inelastic

modulus, and Poisson's ratio, ixn, is stress dependent; this ratio is different about each principal axis, thus

constituting an orthotropic material. The most practical approach is to let the Poisson's ratio related to the

largest stress represent the effective Poisson's ratio for all axes. Other options and consequences are dis-

cussed in section II-F. Assume cr_ is the largest principal stress, and p.,, = I-tn. Squaring, adding equation

(14), and collecting terms gives the combined stress-strain relationship over the entire inelastic range

[ei+e_+e"-I E_ cr,+o'_+o'_- _7, (O'nCrz+crlo3+crzcr3) •
JJ(l + 2ix,,) 1 + 2p.;i

(15)

The right side of equation (15) is the combined principal stress expression, and is noted to be

similar to the distortion energy expression, equation (13), which is related to the uniaxial tension stress,

OrA = O" i +0r2+'O" j- (O"10"2-1-O"10"3 +crgcrs (16)
1 +21.t,_ - "

I/2

Letting or2 = if3 = 0, then e2 = e3 = I_nen and substituting into equation (15), provides the uniaxial

relationships:

_A
eA = EA , (17)

I 2 _ _ I I/2
e,a = e_ +e-;+e_

(1 + 2ix,,) (18)

Using equations (17) and (i), it follows that

-- 8"A -- [-_-l l/b

EA _A _A

or

I _ [cr,d¢1-t'_'1'

EA [a] n/b

Nondimensionalize equation (16) by dividing with or?, and substituting into equation (19), gives

(19)

1 _ • I___._] I/hE A t_!

(20)



where

[
But equation (2 I) was developed in its simplest form by assuming Poisson's ratio independent of

stress orientation, which is satisfied only at the elastic limit where b = 1 followed by • = I. Substitut-

ing equation (20) into equation (14) yields the desired combined stress-strain relationships:

:__,) °,

/ cr'''/l'r ]= - IXi_-_-1-IX_ (22)_-__,aI U"
/ \I Ib r" 7

=(Crl / ICr3_ g_ ,]_3 \a I L_' _'_- _

The associated stress relationships, solved from equation (22), are

O" l __(Q_.q__I/b II_,(l --_l)-}-I_I('2-1-1_3)]

(23)

E. Shear Properties

A shear stress-strain model is not only essential for analytical modeling, but for evaluating rosette

strain gauges from structural test data. Published test data beyond the elastic limit is wanting. An

approximation from uniaxial tension properties developed previously may be cautiously ventured.

Recognizing that shear beyond the elastic limit is related to the same elastic-plastic slip phenomenon

noted in figure 2, a two-parameter shear stress-strain expression is justified,

? = c 3,a , (24)

10



and again the two parameters are determined from the extreme end conditions of the inelastic curve. The

normal and shear stress-strain properties at the elastic limit end of figure 4 are established by

crr.L _ E and 'teL _ G - E
eeL ' Tr.L 2(1+ p,) ' (25)

and related by the distortion energy equation (11) when all normal stresses are zero,

O"
'r - (26)

x/3

Substituting equation (26) into the second part of equation (25) provides the elastic shear strain relation to
the normal tension stress,

2 (1 + _t)

TeL- _ E O'r.L • (27)

The ultimate shear strain may be derived from the assumption that the ultimate shear strain energy

is equal to the ultimate normal strain energy,

fTu T'rdT = feu ae (b÷ i) de
o 0

Substituting equation (26) for the shear stress and integrating gives the ultimate shear strain required to
determine the shear parameter in equation (24),

Tu ----- 8U
b+2 (28)

50

40
c = 98 _.22

f

0.04

I

30 /

20

10

0
0 0.01 0.02 0.03

Strain, In/in

Figure 4. Derived shear stress-strain model.

'_ = 55 T .23 _ ,.,..,==-=-

_ =,,=,,,,,.=.._

11



The two parameters are calculated from

d = log(°rU/trEL) _eL

log(_'V/_eL) , and c = V_ _/{_. (29)

F. Orthotropic Properties

Polycrystalline materials experience orthotropic properties when multiaxial stresses exceed the

elastic limit. It was noted earlier in figure 1 that stressing beyond point A' and relaxing not only raised the

elastic limit about one axis for the next cycle, but irrevocably used strain energy to cause permanent

deformations about all axes. Properties about other axes remained the same as before uniaxial stressing,

creating an orthotropic material.

If a triaxially stressed article is tested beyond the elastic limit and relaxed, the article is essentially

"sprung," and boundaries are permanently changed. The article wilt not behave exactly as it did betore,

when the external load cycle is repeating through the elastic operational range, and should be a considera-

tion in prototype testing. If the prototype is disassembled and reassembled according to specifications,

the prototype will behave elastically in the operating range as before testing. Beyond the elastic range,

the fixed orthotropic properties are subject to change only when exceeded.

In modeling inelastic substructures, boundaries are defined by the elastic global model. The

substructure size selected must assure that remote inelastic stresses acting on the critical zone of interest

do not spread to the elastic boundaries as the critical zone approaches the ultimate stress.

Poisson's ratio is a property affected by plastic flow which is directional, and irreversible, and it

increases with stress. In a triaxial stress field, a different Poisson's ratio is expected for each stress axis.

The only restriction imposed on Poisson's ratio is that the volume growth,

A___VV= (1 +e0(l +ev)(l +e.)- i (30)
VO " " '

at the elastic limit is established by the elastic Poisson's ratio, and that the volume growth at fully plastic

flow is zero. Modifying equation (22) to assume orthotropic Poisson's ratio and substituting into equation

(30) gives

lib

(31)

after dropping high order terms.

At the elastic limit, all Poisson's ratios are equal to the elastic constant, and the volume growth
becomes

12



AV rlO.x],a, (o'.,. + or,.+ o_)

Woo- LTJ (I - 2p.,.) (32)

At the fully plastic extreme, equation (31) is satisfied only if

It,- = It,.,. = be: = 0.5 . (33)

But these extreme limitations in triaxiai stress are identical to those discussed for uniaxial stress, which

implies that Poisson's ratios are independent of each other and dependent only on stress or strain along

their respective axes.

Since stress is the unknown variable in most structural problems, orthotropic Poisson's ratio

related to multiaxial stress may sometimes complicate the solution. Generally, Poisson's ratio is not a

very sensitive property, and a more practical approach is to assume the Poisson's ratio related to the

greater stress is common to all axes. If triaxial stresses are close, then a common Poisson's ratio will

provide very good results. If stress magnitudes span the total plastic range, then Poisson's ratios should

be related to each respective strain where possible. Referring Poisson's ratio to the average of two strains

is another option. Sensitivity analyses of Poisson's ratio as applied to critical models will identify the
optimum option.

Sections V and VI are examples of orthotropic properties applied to biaxiai stress problems. Note

that Poisson's ratio in the denominator of equation (109) is related to dominant strain, e.,., as suggested

above. The maximum stress error that might develop from a maximum spread between e._ and e_- was

estimated from the sensitivity equation (i 13). A 40-percent change in Poisson's ratio (75-percent change
in strain) caused less than 4-percent error in stress conversion.

III. ANALYTICAL MODELING

The basic analytical technique is similar to the computational piece-wise linear method often used

to solve nonlinear problems. Unique to this analytical development was relating all nonlinear material

models to engineering stresses and strains in exponential form, and synthesizing them with existing

strength of material stress and strain models. This simplified the algebra and allowed continuous integra-

tion for more descriptive results. The method uses existing principles of materials and strength familiar to

most analysts, while circumventing plastic theory. It provides detailed insights to inelastic behavior.

Models derived are related to the skirt structure and demonstrate the technique to be used for other
models as required.

The specimen of figure 5 represents a bar or plate having a length L and a rectangular cross sec-

tion of thickness t and width B normal to the page. External unit loads are the in-plane normal load, N,

expressed in kips per inch, and the bending moment, M, expressed in kip-inches per inch. The bar speci-

men model, whose width and thickness are relatively equal, is amenable to one-dimensional stresses and
is a convenient introduction to the mechanics of inelastic behavior.
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Figure 5. Specimen configuration and loading.

A. Normal Tension and Bending Models

Normal tension response models of rectangular bars is defined by uniaxial test parameters. The

normal stress acting on the cross section of unit width is

N (34)
(3rN _

t

and using equation (34), the corresponding strain is

(35)

Pure bending moment M is constant along the length L and deforms into a cylindrical surface of

radius r shown in figure 6. Since cross-sectional planes have been shown as remaining plane in elastic

and plastic bending, the centroid (t/2) of the rectangular cross section and the bending neutral axis are

coincident from which the bending strain is linearly proportional to

n y
_-'M : m+n = r

___1 n I_¢ , m _1

Figure 6. Pure bending geometry.

(36)
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Substituting tensile strain from equation (36) into equation (1) gives the bending stress distribution,

b

o'm = alY ] , (37)

along the cross section thickness as shown in figure 7.

Y
t

ilii_

Elastic Limit ----_'-J

';y
............................_ dy

t _NN/_utral

°

2

Y

+13" ,...__ __

2

Figure 7. Bending stress and strain distribution.

The elemental area is dA = B dy and the moment resulting from stresses acting on the sectional

area is dM = cr y dA. Substituting the stress expression of equation (37) and integrating gives the total
moment acting on the cross section,

t/2 r "rib
2a(t/2) h+ 2

M = a f [Y[ ydy =
- t/2 I. J (b + 2)r b

(38)

The specimen width B is taken as unity, and hereafter omitted in most derivations. Solving for the curva-

ture from equation (38) and then equating with (37) gives

I"

i _ | (b+ 2) M

r L 2a(t/2) h +2

I/b r.,._ I/b

_ 2 (39)
t L a ]

from which bending stress at the extreme fibers is reduced to

O"M =
+ 2(b + 2) M

f,-

(40)
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Note the elastic slope superimposed on the stress diagram, figure 7, is practically concurrent with the

stress calculated from the nonlinear material model over the elastic range. This close fit is a measure of

the accuracy expected from the analytical method. Also, note that when the strain hardening exponent, b,

equals unity, the bending stress degenerates to the familiar elastic stress of a rectangular beam, as it
should.

Bending strains at the extreme fibers were similarly derived by substituting the strain relationship

of equation (36) into equation (39),

1/b

= + F2(b+2) M]-[
(41)

Bending transverse displacements may be derived from the moment and curvature relationship

equation and from the slope expression, 0 = dy/dx. The slope is related to the curvature by

1 dO d2y

r dL dx2
(42)

Equating (39) with (42) gives

I/b

dx 2 2a( t12 )_,+ 2

and multiplying both sides by dx and integrating yields the slope expression of the midplane at x = 0,

lib

0 = Lr(b+2) M ]L2a(t/2)_o + 2)
(43)

Integrating again gives the transverse deflection at x = 0,

L2[ (b+2) M ]_/t,Y = - T 2a(t/2) (b+2)
(44)

B. Combined Stresses

Shear-bending models have a wide variety of application and are essential for test analysis. Since

no instrumentation is available to detect directly transverse shear V, a series of strain gauges measuring

the variation of bending moment along the bar length L, figure 8, will provide the necessary data to

determine the shear indirectly.

16



Axis

Figure 8. Combined bending-shear stress.

The moment, M, on the left interface is assumed to increase with distance, x, to M + dM on the

right interface. Induced stresses likewise increase from left to fight. The stress-moment relationship is

obtained by rearranging equation (37),

O'M a- (45)
/,

and substituting into equation (38) to solve for the moment induced stress,

Since or,.

(b+2) yb M
crM = - (46)

2(t/2)h + 2

= o'M, the force acting on the left interface is

(b + 2) yb M

2(t/2) b+ 2
dA , (47)

and

(cr ,: + d(r O dA - (b+2) yb
• . 2(t/2) h +., (M + dM) dA ,

(48)

give the force on the fight interface acting in the opposite direction. The net force is the difference of

these two equations and is equal to the horizontal shear force in the m'-n' plane,

t/2

"rw B dx = dM(b+ 2) f yb dA (49)
" zl/_:J"t''_'b + 2 Y
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Substitutingthe beamshearforce V = dM/dL and the area dA = B dv into equation (49) and then

integrating gives the tlexural shear stress expression,

= V(b+ 2) [(t/2)b+ _ _yb+ _] (50)
'r_y 2(b + I)(t/2) b + 2

The horizontal shear is equal to the vertical shear along the cross section thickness on the right interface.

Since the maximum shear stress of equation (50) occurs at the neutral axis (y = 0), where the bending

stress is minimum, the maximum combined stress must be calculated from the distortion energy theory of

equation ( I 1). Shear stresses vary along the cross section, but unlike pure bending, the associated strains

cause plane sections to warp, and should be considered when combining with other applied loads.

Normal tension-bending stresses cannot be directly superimposed because they are not linearly

related to strains, equation (34); nor is the bending neutral axis expected to coincide with the section

centroid. However, an interacting model may be formulated by noting that normal strain t:N is uniformly

linear along the cross section, equation (35). Also, the bending strain is linearly proportional to the strain

at the extreme fiber, e,vt, equation (36), because plane strains remain plane after pure bending. Since both

axial strains are linear, they are algebraically added as shown in figure 9(A).

+y

i.._.-.-.t_

+h --I

I

I

L

I

+y

CM _ ON °M

Ill

-
Centroid I I I Y

Bending I. Jl

(A) Strain Distribution (B) Stress Distribution

Figure 9. Combined tension-bending distribution.

The net strain distribution is linear and proportional to the intersection of both strains at a point C

below the cross sectional centroid. The net strain is defined by

E = _,NJrlYhmCcI_, M ,

(51)
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where eM is the maximum bending strain at the extreme fiber having the same polarity as the normal load

N. The neutral axis, C, is negative in the y-direction. The half-thickness, t/2, is replaced by h for sim-

plicity of notation, and the normal strain of equation (35) is calculated from the given applied normal

load, geometry, and material properties.

The combined stress distribution is shown on figure 9(B) and is determined by substituting equa-

tion (51) into equation (34) to give

o" = aeN-I-__-L--_ eM SGN N (h----_eM
(52)

Expressions in absolute form allow raising strains to odd powers. SGN( ) is the signum function which

reestablishes the sign of the expression. If its sign is positive, then the function equals + I and the strain

is positive. If the function equals - 1, the strain is negative.

Solutions of the stress and strain distribution of equations (51 ) and (52) as a function of v rest with

determining the unknown variables e,u and C from the two static load equations; dN(y) = or(y) dy, and

dM(y) = or(y) y dr. Substituting the stress expression of equation (52) into these static equations, the net

normal load and total bending moment are

and

U = eu eM dy+ eu+ -C) eM dx,

F /1 I"_fhhCI (Y--C) e,M ydy+a e_N-t (3'-C)M = a eN-t(h_C) c (h-C) eM ydy

(53)

(54)

respectively. Integrating within the limits, the normal load and moment equations become

N - a(h-C) [_1 -_21 ,
eM(b + 1)

(55)

and

where

M

_S/_])--e- M _2 +(b-_'_- __---_]]-r_l (b+2)LeM+
(56)

d_l = [ABS(eN+ eM)] (b+ I) , (57)
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and

(h + C) (58)
_2 = BS N--e,M (h-C)

Given the geometric property h and combined loads N and M, the normal strain e,v is calculated

from equation (35). The bending strain at the extreme upper fiber eM and the bending neutral axis C are

determined from equations (55) and (56), using the Newton-Raphson method presented in appendix A.

Combined strain and stress distributions over the bar cross section may then be calculated by substituting

the resulting bending strain and neutral axis values into equations (51 ) and (52), respectively. Conditions

on figure 9 are that strains eN and eM have the same polarity, and that C is negative, but may be similarly
modified for other conditions.

Results from this analytical normal tension-bending model are shown in figure 10. The linear

bending strain distribution exhibited in the strain diagram, figure 10(B), is superimposed on the uniform

normal strain, as in an elastic beam diagram. However, the neutral and centroid axes are not coincident,

and the location of the distance C between them is defined by equilibrium conditions in the nonlinear

stress diagram, figure 10(C). There the areas of bending tension and compression representing loads are

equal and opposite which cancel the axial load. Their moments about the neutral axis add to balance the

externally applied moment.
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Figure 10. Combined normal tension-bending diagram.
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The unsymmetrical shape of the stress profile may be understood by projecting select points from

strain and stress diagrams onto the uniaxial stress-strain curve, figure 10(A). These projected points are

labeled PONM. It is clear that large tension strain from bending loads projected on the shallow slope

between points N and M produces relatively small stresses, which accounts for the projected narrow ten-

sion stress component into figure 10(C). On the other hand, small compression strains projected on the

steep slope of NOP produce large stresses, which accounts for the very wide projected compression stress
component.

Stress and strain responses demonstrated in the diagram have interesting implications on struc-

tural verification analysis. Back-to-back strain gauges are used to isolate pure normal strains from

combined normal tension-bending strains. When testing in the elastic range, the pure normal strain is the

average of two back-to-back strain gauge outputs. Beyond the elastic limit, this formula is not valid as

revealed by the strain diagram. Though the bending stress is a third of the normal stress, the bending

strain is over four times the normal strain. There is no direct method for isolating the normal strain from

combined strain data except through an inelastic math model which is essential to support design, struc-

tural test, and operational analysis. The combined normal-bending loads model provides a firm basis for

predicting failure. It is a prerequisite for sensitivity analyses leading to robust designs and operational

load placards to increase safety margins for unique missions.

C. Plate Stresses and Strains

All of the previous bar models were derived for rectangular cross sections whose specimen width

dimension B along the Z-axis is not much greater than the thickness t. These models form a special class

of one-dimensional stress specimen. Another type structure is the two-dimensional stress specimen, such

as plates and shells, having length and width dimensions many times greater than the thickness, and in

which the stress normal to the plate is considered negligible. A plain stress condition is assumed to exist

in plate problems.

Normal stress-strain relationships on plates may be derived by applying the plain stress con-

ditions, o-,. = 0, to the second and third of equations (23) to obtain the associated strain,

Substituting equation (59) into the first and third of equations (23) gives the stress expressions in terms of
biaxial strains,

[ J"fir = a I-- I.t2 '

a(e:+ la'e") t.fe,- ij,e:] (b--I)+
[ 1 - _]b

(60)
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If the plate is subjectedto uniaxialstress,in which (r- = er,.= 0, then the first partof equation(60)
revertsto e:/e,. = - IXwhich defines the uniaxial Poisson's ratio. The uniaxial strain is determined from

the first of equations (22),

which, again, reverts to the uniaxial expression of equation (1). It may be concluded that a plate in

uniaxial normal stress behaves as a bar specimen in which the stress is defined as

N,. (61)
O" X --

2h

where tt = t/2.

Multiaxial property ( ! - i,t2) was introduced into equation (60). Since the Poisson's ratio is related

to the largest stress, it may be expressed as a two-parameter property lot the compatibility reason given in

section II,

Fx = (1-1,_)= Qcr, R (62)

Poisson's ratio is calculated from equation (6) for end conditions I,tu at ere, and la,t.:r at erE;., and substitut-

ing into equation (62) gives

F_-u = [1 - g,_ul and F.,-EL = [1 -- tX._EL] . (63t

Both parameters of equation (62) are calculated as in section II,

R - log [F.,.v/F,.E,.] and Q _ F,-F.t. (64)

Pure bending of plates results in a biaxiai stress condition because the top surface is subjected to

tension while the bottom is in compression simultaneously, and as in the bar specimen, produce lateral

contraction and expansion from Poisson's ratio effects, figure I i. However, plate widths are very large

compared to the thickness, forcing lateral strains at the top, bottom, and middle surfaces to be equally

restrained to e: = 0 for continuity [7].

Invoking the plate condition and bending constraint, _r,. = e. = O, into the third of equations
(22),
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+cz,£ =0

Figure !1. Poisson's ratio effect on plates in bending.

ql_ 2 _ 0

the plate lateral strain is satisfied when

- _,. (65)
_x

Substituting equation (65) into the first and second of equations (22) gives the other two plate normal
strains

I/b

r -i lib

_:, = I-_1 [- _.,-- _.h •
I."J

(66)

Substituting equation (62) into the first of equations (66), the axial strain is rewritten as

rt_]'_ F._]La.l{r,!''"''
e.,. Q {r R __= .,. = a ,

where the combined exponent is defined by

(67)

b

l +bR
{68)

23



Equating (36) with (67) gives the axial stress through the thickness

o'._ = (69)

This stress acting over the plate cross section produces a moment, dM = or, y dr. Integrating over the

thickness, solving for the curvature,

I _ M 13+2 Q
r _¥2 , (70)

and substituting equation (70) into equation (69) yields the plate bending stresses at the extreme fibers

(71)

Substituting equation (70) into (36) gives the bending strain over the thickness,

and at the extreme fibers,

eM = + (73)

The slope expression at x = 0 is derived by equating (70) with (42) and integrating,

o=,[MF_+_]r¢]°':1''°
LLzh'"+_':lLa-IJ

(74)

Integrating again over the length, gives the deflection at x = O,

The bending shear stress expression is analogous to the bar stress, using plate combined

exponent, 13,
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V (13+ 2)[h 'a+ i,_y,a+ i_]

'rxy = 2([3+ 1) h ta+2; (76)

Combined bending and normal loads interaction equations were derived similarly to the bar speci-

men above. Substituting equation (61) into (t) gives the normal strain as a function of the known applied

axial load,

(77)

The combined normal and bending strains acting over the cross section are expressed by equation (51).

The bending stress over the section is obtained from equations (36) and (69),

_M = _ ABS eM (--_'_-c) SGN (y - c) .
(78)

The normal uniaxial stress is defined by equation (!),

fiN _-" a_'N b ,

which may be modified to conform with equation (78) by multiplying and dividing material parameters,

fiN = IeNWf3Q ata--f3)/t'_f3IaQ/.----_olf3.

But

8Nb/[3 Q atb-f3_/bl_ _ 13N ,

so that the combined stress equation is simplified as

trr _(J/b!la ABSleN+ eM O'--C)[ a (79)

The net force acting on the cross section is dNO,) = O'T(y) dy, and integrating over the limits - h

to C, and Cto +h gives
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where

N

(h - C) [,3 - *4] [a___ _

keJ([3+ 1) eM
(80)

(h-C) [_a;b_Jf_t I (h-C)I_, N (h+C_))ll Ih (h_C) FeN+I]II ' (81)
- -- ,4 h+-- _ _ +03

,U (_+l) EM (_+2) M (h _-;Ni__M

03 =[ABS (e,v + e,u)] ta + =) , (82)

and

_4 = IABS(eN_eM(h+C)_qcf_+')(h--C)]..] (83)

Given the geometry, material, and applied axial normal and bending loads, the bending neutral

axis C and bending strain eM are solved simultaneously from equations (80) and (81) through Newton-

Raphson method presented in appendix A. The stress and strain profiles over the plate thickness are

calculated from equations (51) and (79).

IV. FEM VERSUS ANALYTICAL MODELS

Two independent global and substructural models of the SRB aft skirt were developed using the

ANSYS and NASTRAN commercial codes. Both substructural predictions of the critical weld region

were in good agreement with gauge measurements on the structural test article throughout the elastic

range. Beyond the elastic limit, the weld failed very short of predictions. Given that analytical methods

solve few simple problems accurately and that FEM solves many complex problems approximately, the

focus of the following analysis was to assess the nature and reasonableness of FEM approximations.

The ANSYS finite element method was selected [6] because of its built-in graphic and contour

mapping capability. The material behavior option used was the multilinear kinematic hardening (KH),
and the element was a three-dimensional utilization brick (eight-node isoparametric) that was applied in

the aft skirt structural model. Because a brick element is often used to fine tune predictions of triaxial

stress zones having the highest potential for failure, it was the most critical and logical element to be

explored.

A common materials model was defined to be compatible with the ANSYS and analytical

methods using equations (2) and (3),

o" = 87 e°2 (84)
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basedonassumeduniaxialpropertieserFL= 26.3ksi, O'v= 45.7ksi, _u = 0.04, andE = 10,500 ksi.

The ANSYS code defines Poisson's ratio similar to equation (6),

where Ks is the secant modulus. The analytical method used the same formula which reduced to

= 0.5- 95,000 _.4o (85)

All other properties required for this method comparison are defined above and may be generated by the
plate specimen program in appendix A.

Two simple structures, as in figure 5, were modeled, both specimens having a length of 6 in and a

thickness of t = 1,44 in. The bar specimen had a width B of 1 in. The plate specimen had a width of 7 in

to exercise the continuity condition in bending. Pure bending and tension loads were applied independ-

ently and combined on both specimens providing sufficient number and variety of cases for comparison
and cross checking. Loads were selected to produce stresses on the outermost fiber in excess of the elastic
limit.

A. Bar Specimen

Results from the analytical method were based on equations (34), (35), (40), (41), (51), and (52)

combined with the stress program in appendix A. Results from the FEM were based on data taken at the

specimen midwidth and uppermost brick to represent typical stresses away from edge conditions. A

comparison of the two sets of results, table 1, shows that Poisson's ratios compared well, but analytical

bending strains ranged up to 20 percent higher than ANSYS.

Table 1. Analytical versus ANSYS results of bar specimen.

A B

N M

kip/in kip-in
per in

40 0

50 0
60 0

0 15

0 18
0 20

40 2.5

40 7.5
40 10

olDIE
Analytical Method

I

Stress Strain [ P-

ksi , in/in I
27.7 .0033 .34

34.7 .0101 .43
41.7 .0252 .47

31.8 .0065 .41

38.2 .0163 .45
42.4 .0276 .47

33.2 .0080 .42

39.7 .0197 .46

43.3 .0304 .47

Flol.
ANSYS Code

Stress Strain p
ksi in/in

27.2 .0032 .34

35.1 .0100 .44
42.4 .0228 .48

31.7 .0062 .39

37.1 .0139 .44
41.0 .0225 .45

31.8 .0066 .41

39.1 .0182 .47

42.6 .0275 .48
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Recalling that FEM data output relates to the average value of the outermost element, FEM bend-

ing strain predictions are expected to fall short of surface prediction (fig. 12). This error increases with

increasing moment and with decreasing number of bricks modeling the thickness. It is a characteristic

error that applies to elastic bending stresses and strains as well as plastic strain computations. By

extending the ANSYS linear strain plot to the surface, the modified strains came to within 5-percent

agreement. This match on all three loading models, and notably on the intricate combined loading model,

established a mutual credibility of the analytical and FEM approaches with a one-dimensional stress

specimen.

Surface

\
Element

Centroid

l

Characteristic
Error

Surface Element I / /

I = Output ;[ I

i!i_ii _ /

/
/o Output is average

value in element
at centroid

Figure 12. FEM characterisitic surface error.

B. Plate Specimen

The ANSYS computational method was applied to the 7-in width specimen with no other change

from the previous bar specimen computation. The analytical approach was similar to that of the bar speci-

men, except that plate equations (77) through (81 ), combined with the plate program in appendix A, were

imposed on the specimen. Results are presented in table 2.

Table 2. Analytical versus ANSYS results of plate specimen.

ABCIDIE
N M Anal_i_l M_d

kip/in kip-in Stress Strain
per in ksi iWin -¢X

40 0 27.7 .0033 .34

50 0 34.7 .0101 .43
60 0 41.7 .0252 .47

0 15 31.8 .0059 0

0 18 38.2 .0141 0

0 20 42.4 .0231 0

40 2.5 33.2 .0069 .34
40 7.5 39,7 .0162 .34

40 10 43.3 .0245 .34

F]OI"
ANSYS Code

Stress I Strain _Z

ksi [ in/in "¢X

27,6 .0031 .32
36.4 ,0089 .35
45.0 .0204 .29

32.2 .0056 .37

37.7 .0105 .41
41.9 .0154 .42

32.5 .0057 .34
40.7 .0137 .35

44.3 .0193 .34
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In comparing the plate specimen results, the FEM responses in columns F, G, and H due to axial

normal loads only (M = 0) should be identical to those in table 1, since both specimens act in uniaxial

tension, as discussed in section III-C. Contrarily, plate model strains in column G are shown lower than

column D, and table I, implying a lateral constraint, e,_ = 0, where none was intended. If such a lateral

constraint was imposed, strain ratios in column H would be naught, but in fact, FEM strain ratios are

large. The ANSYS results of the uniaxially stressed plate as modeled are bewildered.

The most naked departure between the analytical and FEM plate results was noted in the pure

bending model for N = 0 and M = 15 through 20. It is generally established [7] that elastic plates in

bending must assume zero lateral strain, e: = 0, at both surfaces and midplane away from edges in order

to satisfy the continuity condition illustrated in figure I 1. The FEM lateral strains derived from column H

are about a third of the axial strains, which clearly fails to comply with plate lateral constraint. This

ANSYS fault is further manifested by the very small axial strain prediction in column G. Strains in

column D represent the lower limits.

The same surface characteristic error of figure ! 2 was observed in the FEM plate bending model

which resulted in submarginal predictions. The standard remedy is to increase the brick elements across

the thickness until the strains in surface elements converge. Since doubling the brick numbers more than

doubles the machine time, subdividing only the surface elements within the aspect ratio limit should be a

more prudent course.

The net effects of plate continuity condition and FEM surface error may cause strain predictions

to be 50 percent less than expected when compared with the analytical method. The ANSYS contour

mapping feature does locate peak stress areas very well. Most patterns and trends may be valid, but

intensities should be checked by other methods.

Based on deficiencies demonstrated by the results of two different loading conditions, it seems

that the ANSYS brick element as presently modeled with the plastic option may be inadequate to predict

plate strains and associated stresses in critical two- and three-dimensional stress regions.

The analytical method served to expose a conflict with the FEM plastic plate option, but the

ANSYS elastic option with piece-wise nonlinear material input might have served as well. In fact, the

ANSYS elastic piece-wise approach is recommended for primary inelastic computations (or backup)
until the plastic option deficiency is resolved. Element number and sizes must be checked on all FEM for

convergence of bending strains within reasonable tolerances.

V. BUTT-WELD STRESSES

Butt-welds are preferred joints for permanent assemblies because their mechanical behavior is

uniform and undistinguishable from the connected base plate under normal operating loads. Beyond the

elastic limit, dissimilar joint material properties and geometries promote stresses which influence the

ultimate safety factor. The material discontinuity stress discovery was reported [I] in an exploration

mode and is here synthesized into the ensuing analytical method.
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Figure 13 is a squaregrooveconfigurationof butt-weldedplates.The platesaremilled base
material. The weld filler is usually the samebasematerialwith addedsubstancesto improvewetted
surfacesandflow properties.Thegoverningweldgeometryis simplythethicknesst limited by adjoining

plate geometry requirements, and width w is usually decided by manufacturing considerations discussed
before.

Interfaces

Figure 13. Butt-weld specimen.

A. Material Discontinuity

Structural areas with greatest potential for yield and failure are often identified by severe, local

discontinuities of loads, temperature, geometry, dissimilar base materials, and combinations. Another

type of discontinuity is the insidious butt-weld of the same base materials; but interfacing materials

exhibit sufficiently different mechanical properties beyond the elastic limit to cause local distortion.

Property differences are primarily a result of the manufacturing process, such as HAZ gradient, casting

semblance of filler, filler metal additives, work hardening, and heat treatment variations. In any case, the

phenomenon and analysis at their interface are the same.

When two such materials in tandem are subjected to a common axial stress, or,., they exhibit a

common strain and Poisson's ratio up to the elastic limit. Beyond the elastic limit, properties of materials

I and 2 bifurcate to establish their independent stress-strain and stress-Poisson's ratio relationships,

which produces two different axial strains (el and e2) and two Poisson's ratios (I,_ and _2) as illustrated

in figure 14. Because this difference of properties is the source of interface discontinuities, their relation-

ship to stress must be redefined with their new origin at the bifurcation.
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40 I I

LI i I
I I

I I

10 _ I ¢ I I
l j , , 2

0 ; ; ! .... ; ; ;

0 .01 .02 .03 .04 .30 .34 .38 .42 .46 .50

Strain Poisson's Ratio

Figure 14. Properties of two materials under common stress.
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The uniaxial stress-strain expression should be similar to the two-parameter form of equation ( 1),

(_r+,- erE/.2) = Ale:, - et:c.2] R (86)

where subscript EL,2 refers to the new origin, which is the elastic limit of weakest element, 2. Given

ultimate and elastic limit stresses and strains of each element, and using equation (1) to calculate

immediate stresses, ok._ and o_. 2, at a suitable strain of weakest element,

8,U,2
_k,2 = _ , (87)

3

the exponent and coefficient of each element is computed as before,

B = iog[(cru - erEt.2_)/(erk - _rj:t..2)] (88)

Iog[(eu - et.:L.2)/ (ek,2 - eEL.e)]

A = _rk- frEL.2 (89)

['gk.2 -- _EL,2] B

The two-parameter stress Poisson's ratio relationship is similarly developed. Using equations (5)

through (9) and (!), Poisson's ratios,

(90)

are calculated at ultimate stress for each element, iXu. t and IXu.2. Intermediate stresses, ouk. _ and oua. 2, are

calculated for g,k = 0.36 from equation (90),

(91)

The stress-Poisson's ratio property beyond the elastic limit is

(be.,. - P-EL) = G[cr., - ffEL] F , (92)

and the two parameters are determined from
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F = log[(pUu- P'F,L.2)/ (l'J-k-- lXr'L'2)] , (93)

logl(o'u - (_EL,2) [ ((_k -- (_EL.2)]

and

G = (It, k-- P.EL,2) (94)

lcr k -  rFX,2]

The specimen of figure 13 is in a plane stress condition defined by or. = 0. Substituting this

condition into the second of equations (22), the uniform lateral strain on either element subjected to axial

stress, or,, is

lib

_.y = -- P'x

and after exceeding the elastic limit, the lateral strain assumes properties of equations (86) and (92),

...,, aFV(Yx--' EL,21,,8

(_'Y--_'EL'2) = --O[(Yx--O'EL'2] _ A J '

which reduces to

(8),__gEL,2 ) = G [%_CrEL,2]CFB+ n)/a (95)
A (I/B)

Lateral contraction on each element resulting from the lateral strain of equation (95) is calculated

from

V _-"

h

f (_'y- g'EL,2) dy .

0

(96)

Applying equation (96) to the two elements of different materials subjected to a common axial

stress, a lateral mismatch occurs at the free interface as shown, in figure 15(A) and expressed by

VI --V 2

hG1

AI(n/Bn)
[O..r - O.EL.2](FI xBl + I)/BI

h G2 i,,- _ I(F2xB2+I)/B2

A2 clIB2) t'-'x-- UEL,2J
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Dividing by thelast term.andneglectingthestresswith theexponenthavingsmalldifferencesbetween
materialpropertiesof thesamemetallicbase,thenet lateraldisplacementof thetwo differentmaterials
elementsat the free interfacereducesto

L 4v,, = v, -v-, = h G2 [cr,--(TEL _,](F2xB2+ I)/B2 GI A2 (I/B
_ AZ_n/a2______ ..- - ___. AT_i . (97)

But elements I and 2 were bonded at the interface in an unloaded condition, in applying the axial

load, the constrained interface caused local distortion as shown in figure 15(B). This distortion is the

symptom of discontinuity stresses. A math model was devised in appendix B which consisted of an

externally applied unit load q abruptly ending at a distance d, representing the interface of one material

element. The abrupt load change simulated normal and shear discontinuity stresses at the boundary,

which propagated through the weld (weakest) element. These discontinuity stress distributions were

derived from classical mechanics, and results are stated in equation (B-9) in nondimensional form.

The unit loading q of figure B-i acts normal (y-axis) to the element, and because of the

orthotropic nature of polycrystalline materials, lateral material properties are independent of equations

(86) and (92). Applying plane stress conditions to the second of equations (22), the lateral strain is

(98)

Substituting these parameters, and the first and second of equations (B-9) into (98) gives the

displacement

I/b

v = f [Dy- IxD.r] dy .
o

(99)

In reviewing the stress distributions along the half-thickness in figure B-3, the D,. component is

noted to describe equal positive and negative areas, which implies that the intergration over the thickness

would negate its contribution to lateral displacement in equation (99). Deleting D,. and integrating gives

the lateral displacement at the boundary as a function of the dummy loading,

(I00)

where

I T+4 _ sin aT cos- aT ----::-_. cosh ctH- + sinh ot o

Ks i
(i01)
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Figure 15. Material discontinuity displacements.

To match the net displacement of figure 15(b), the external dummy unit load in equation (100)

must compress element 1, and stretch element 2 with equal and opposite intensity,

(102)

Substituting equations (97) and (102) into the bonded interface equilibrium condition, v., + v,/ =

0, the external dummy-to-axial unit loads ratio is
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q
= Kq , (103t

[_._ -- O'F.I., 21 _

where

and

a _G2KsF, GiA2,m2_ a, ''°' __o,_

'
(104)

b, (F2xB2+ 1)
= - (105)

B2

Finally, multiplying equations (103) and (B-9) eliminates the dmnmy load q and produces the

desired discontinuity stress distributions at the interface as a function of applied axial stress beyond the

elastic limit,

or,

s, =fq': l _ =• [cr,- er,,-:L.2l (
D.,. Kq ,

S, _ = cro,. = D, Kq

= (roy = D,, Kq (106)
S,, [a_._- _EL.2]_ "

O'(h. v
S,:,, = = D,.,, Kq

" [_.," -- O_EL.2--_l " '

where or, > (r/-:r.2 and (D.:L.2 refer to the weakest element, 2. Most relevant to a designer is the maximum

stress factor occurring at the applied ultimate stress of the weakest material. Equations (1071 are the

ratios of stress components with the ultimate stress:

Su,- - D,. Kq
CTu.2 [_V.2--_r_'L _]_

Sv,. - D,. Kq
• O.U, 2 [O'u,2--ffl...k.2] _ (107)

Su.,:,, _ D,, I(q_rv,2 [_r<2- crEL.2]_ .
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Figure 16presentsthe discontinuity stressfactors distribution along the interface from mid-

thickness to surface, as defined by equation (107), using properties from figure 14. The weld geometry

assumed was that of the SRB skirt, t/w = 5.75. Note that the shear stress component is largest and occurs

at v/h = 0.96. It is not possible to experimentally measure this shear because it is transverse, and because

it occurs just below the surface. The shear distribution is very sharp, and it required 42 points to locus the

peak and would have eluded most FEM modelers using six element thickness selection. The peak value

was compromised further because an element averages the stresses over each brick thickness. Never-

theless, shear presence was hypothesized by Mr. Paul Munafo from a metallurgical viewpoint during the

skirt failure review, but it could not be supported by mechanics at that time. Because material models are

so arduous, a program to calculate them and stresses of equation (107) is presented in appendix B.

The failure expression of equation ( I 1) may be used to compute the combined discontinuity stress

factor at the interface. Including a factor of one onto the x-stress component to account tbr the externally

applied axial stress, the combined stress factor is

Su,. = X/(I + Su.02 + S_y-(! + Su.,) Su_.+ 3Sv.,:,. • (108)

The material discontinuity stress factor for the above butt-weld example was
occurred 1/32-in below the weld surface.
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B. Geometric Effects

Benefits of improved specific strength materials in high performance shell structures are often

tempered by joint weaknesses and further discounted by joint geometric limitations. Butt-weld simple

geometric parameters were examined for inelastic mechanics effects using models developed in sections
II and IIl.

Applied lnplane Stresses: Discontinuity stresses were calculated for plate specimen of butt-welds

having a thickness-to-width ratio of t/w = 5.75, figure 16. Other ratios were varied over a practical range

to ascertain the existence of a weld geometry that would decrease the peak stress factors at the interface.
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The governingparameterwasa stressfactor Kq of equation (104). Using the same material properties

and location of maximum combined stress, y/h = 0.96 observed in figure 16, a combined discontinuity
stress factor of 1.11 was noted to occur over a range of t/w = 1 to 7. Based on these results, there is no

requirement from the mechanics viewpoint to control it. The overwhelming geometric consideration
seems to be the heat sink effects and associated thermal distortions induced into the structure.

Test specimens of weld joints are usually shaped with nearly square test cross sections which

impose triaxial stress conditions and with unique material discontinuity stress factors at the weld

interface. However, most butt-weld joint applications are on plates having cross sections of very large

aspect ratios which result in a two-dimensional stress field causing the discontinuity stresses defined

above. From the designer's viewpoint, it is necessary to know that current test properties from square

sections are not more benign than those experienced in plates and shells. Projects should incorporate a

plan to test a statistical sample size of both configurations to provide the designer with an appropriate
data base.

Bending Stresses: In-plane loading is the preferred strength application of butt-welds, but these

same loads can induce bending when welds are designed into regions with abrupt geometric changes.

This principle is especially appreciated in girth welds of pressure vessels where abrupt changes in

meridional curvatures between end-closures and cylinders cause abrupt displacement differential at the

intersection. Displacements are matched through shears and moments which induce local discontinuity

stress waves that damp out over a length related to (R t)". In particular, local bending causes materials

with the lowest elastic limit to hinge and assume a disproportionate share of distortion. The combination

of the peak stress waves falling in the girth weld having the lowest elastic limit causes the weld material

to yield first and progressively distort most.

Because bending displacement to failure is a function of weld width noted by equations (74) and

(75), the wider the weld or the HAZ, the greater the safety margin. But controlling this geometric

parameter is not a reliable method for designing high performance structures. Consequently, good design

practices suggest that all welds be designed away from discontinuities wherever possible.

If local bending cannot be designed out of butt-welded plates, then the weld width determined by

manufacturing process discretions must be analyzed to assure sustenance of the superimposed local

moment displacements to within the specified margin; if it cannot, the plate thickness should be

increased. Nevertheless, the final decision on weld width should invariable continue to rest with metal-

lurgists and manufacturing considerations.

VI. STRAIN GAUGE DATA ANALYSIS

Strain gauge data analysis closes the loop on the structural modeling process. Structural failure

predictions are based on four critical design uncertainties; maximum expected operating load analysis,

manufacturing and processing quality and tolerances, strength of material confidence, and stress

modeling assumptions and techniques. Only the last three combined uncertainties are verifiable from

development structural test through strain response measurements on a test article under well-defined

applied loads. Preferred measuring instruments are electrical strain gauges.
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The primary purpose for applying the multitude of gauges that often move project managers is to

assess the structural behavior of critical regions, to correlate measurements with the stress model predic-

tions, and to ultimately fine-tune the prediction model. The calibrated model is then used to extract and

verify loads, again through strain gauge data under actual operational environments. At this point, the

uncertainties are not only resolved, but the verified model is used to determine safety margins with a

variety of projected operational loads.

Another important application of strain gauge data correlation with prediction models is the

verification of prototype safety factors. Because prototype test structures must remain operational after

test, a maximum test load of 20 percent above the elastic limit is allowed. In this 20-percent nonlinear

response sample, the strain gauge data is tracked with the nonlinear prediction model. If the gauge data

and model predictions correlate very well, then the prototype article is expected to support the predicted

ultimate safety factor.

In all the above cases, strain gauge data evaluation is a direct feedback to modeling predictions.

To begin, strain gauge types, ranges, locations, and orientations are determined from a map of critical

stress regions based on prediction models. The same map is required for evaluating the resulting test

strain gauge data. Recorded strains are converted to the conventional domain of stresses used specifically

in prediction and materials data bases. The conversion of multiaxial strain to inelastic stress variables is
made difficult because the Poisson's ratio increases with stress, which in turn is nonlinearly related to

stress. A conversion method follows which is based on the preceding analytical approach.

Stresses normal to a plate, or shell, are considered negligible so that a plain stress condition may

be assumed to exist, o-,. = 0. The related principal stresses are similar to those derived in equation (60),

and rewritten with orihotropic Poisson's ratios,

aF-_r[.,,,+ _la,x_l'i'z_:l°o'., = _ -

0" z

_, (_=+ I*.,aO

e,.r+ bt,ze,z

(109)

(! 10)

Poisson's ratios are related to strain about each axis by equation (5),

it.,. = g e._f , Ix: = g e: I . (111)

Substituting equation (111) into equations (109) and (110) produces the required principal stress

equations expressed in measured strains,

+ +_to',=a -_--- ,
• -8 .YJ

- Le.,"+ g_l +,I_

(I 12)

38



Solvingfor thedominantstress,_r,-,from thefirst partof equation(I 12)andsubstitutinginto thesecond
equationprovidesthe two principal normalstresses.

Note thatPoisson'sratio in thedenominatorof equations(109) is relatedto dominantstrain, e_,

as suggested in section II-F. though it is shared by strains e., and e-. The maximum error caused by this

simplification may be determined from the nonlinear expression of Poisson's ratio in the first of

equations ( I 12). Differentiating stress o'x with respect to e,. in the denominator and dividing by the stress

and strain gives the percent error of stress with percent change in strain,

dffx_ 200bfge., -2f dex (!!3)

_._ ! -- g_,x 2f E.x '

where the maximum de,./e, = (e,-eYe,-.

Equation ( i 12) is suitable only when axes of principal stresses on the test article are known and if

shear stresses are not existent. A set of perpendicular strain gauges, tee rosettes, are used to measure

these principal strains. Symmetrical pressure bottles and shells of revolution are examples of zero shear

presence; but regions on plate or shell known to have inplane shear stresses must be instrumented with

rectangular rosettes, figure 17, to obtain the third equation for solving three inplane strains.

ell

EIII __I

_ Reference

Mark

Figure 17. Rectangular rosette orientation.

The rectangular rosette has two perpendicular strain gauges with a third bisecting them at 45

degrees. They are mounted at some known angle with respect to a reference x-axis marked on the test

article as shown. The relationship between strain gauge readings and the normal and shear strains is

defined by the transformation matrix,

'P'II

I'P, HI

m

cosZ(0)

= cos2(0+45)

cos-(0 + 90)

m

sin2(0) sin(0) cos(0)

sin2(0 + 45) sin(0 + 45) cos(0 + 45)

sin2(0 + 90) sin(0 + 90) cos(0 + 90)
/

_X

"Y,|'V

(114)

where the Roman numeral subscripts refer to the measured strains. Equation (I 14) has the form

39



x = [AI Y ,

from which the reference axis strains are resolved through its inverse matrix form,

Y = IA]-' X . (115)

Restating results of the stress tensor in section 11with strains and substituting the strains resolved

from equation (115) provide the principal strains at the rosette location

9 7'8x+Sz+ 1 vrer2+8__2tz,8.+.y,._ .
_,,2 = "---_--_ .... (116}

The angle producing principal strains is

"_X:

tan 20p - 8.,.- e:' ( I 17)

and the maximum shear strain is

_'m_, = +_1 Ve8.,.2 + _2_ 2_._8: + y._2 . {1 18)
2

To convert principal strains to principal stresses, substitute results from equation (i16) into equation

(112) as before.

VII. MODELING VERIFICATION

A. Materials

There is adequate documentation on normal stress-strain data through the inelastic regime, but

none on Poisson's ratio and shear strain at ultimate stress to verify models in section II. Orthotropic

Poisson's ratios may be backed out of biaxial strain responses from known stresses developed on pres-

surized elliptical domes. This same test could verify strain gauge conversion equations (112).

Another task would be to verify the materials discontinuity stress phenomenon. A simple

approach would be to test welded plate specimens having a width seven times the thickness to failure and

compare the strength results with current weld specimen having square test sections. A more

comprehensive task would incorporate a photoelastic coat to assess plastic strain variations associated

with HAZ, fillet, and base properties concurrently in the weld region.
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B. Analytical Models

Though analytical model developments were based on logical extensions of sound physical

principles, some simplifications were necessary to reduce certain models to practical forms. Except for

the materials discontinuity stress development, a necessary mathematical check for all inelastic models

was to substitute the linear parameters a = E and b = 1 to assure these expressions collapsed to the

familiar textbook strength of materials formulas. It should be interesting to experimentally verify the

plate bending model.

Since SRB skirt ultimate safety factor prediction by the NASTRAN code was similar to the

ANSYS code, using both plastic options and brick elements, it would seem appropriate to also suspect

NASTRAN plate results until verified by a similar ANSYS task [6].

VIII. SUMMARY

The safety of all structures depends upon the inelastic strength to ultimate stress behavior, yet this

phenomenon is not well known. Perhaps there has been little incentive to dwell into intellectual nonlinear

analyses that are bumped against arbitrary safety factors when a structural test to failure can more posi-

tively confirm the ultimate safety margin. However, it does not provide the physics of failure. When a

critical high performance structure failed short of predictions and a redesign again failed short with no

further clues as to the mechanics of failure, it became necessary to understand the structural behavior of

inelastic stress as applied to design through test analysis.

The behavior of structures beyond the elastic limit is typical of the elastic-plastic mechanics of

appendix C, which is neither very versatile nor comprehensible to the prevalent designer. Instead, the

approach employed was an analytical method similar to the piece-wise linear technique used with linear

computational codes and stepped nonlinear material inputs. The analytical method difference is that non-

linear material properties were expressed in engineering stresses and strains and modeled in exponential

form, and were then integrated with strength of materials linear stress and strain expressions. The inte-

gration of these exponential expressions is continuous which allows for fine focused solutions.

Several analytical structural models were developed that are basic to plate and shell welded con-

struction, and predictions were compared with a commercial FEM. A common strain error characteristic

to all FEM bending models was noted. Computed maximum bending strains of FEM codes are not at the

surface, but they are predictions at the centroid of the surface element, figure 17, resulting in a lower

strain prediction.

A simple plate structure was modeled with the same ANSYS code using the same SRB skirt

plastic material and brick options. The uniaxial specimen produced mixed results. Axial strain predic-

tions were low enough to imply an inappropriate lateral constraint, but the strain ratios did not comply

with nor without that constraint. Bending specimen results did not conform to plate continuity conditions

in which the lateral strain along the width must equal zero. In comparing the net results of the ANSYS

plate compliance and surface error predictions with the analytical method, the ANSYS method rendered

50 percent less strain.
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Basedon the few SRB relatedexamples,the ANSYS plastic brick option was clearly not an

appropriate model for the aft skirt stress analysis beyond the elastic limit. Since the NASTRAN code

predictions, using similar options, fell just as short as the ANSYS, the NASTRAN method should be

suspect until scrutinized similarly to the ANSYS task [6]. Inelastic analysis may still be accomplished

with either code by incorporating nonlinear material properties into the linear elastic option in the

familiar step-wise fashion. This step-wise method is recommended as a back-up approach for future

design analysis.

Discovery of weld discontinuity stresses was reported earlier [1] and was incorporated into the

analytical method developed in this study for completeness. Results indicate shear stress is a significant

factor in the failure criteria, which has a very narrow distribution, and peaks 2 percent below the plate

surface at the material discontinuity interface. It is not possible to experimentally detect it, and it is dif-

ficult to model it through FEM. Combined discontinuity stresses are not dependent on geometry, but are

strongly dependent on the relative properties of the interfacing elements: first on the ratio of their

elastic limit stresses, and then on the strain hardening exponent ratios. The implication is that material

discontinuity stress may occur in a very narrow band of the weakest material.

The exact stress and strain coupling under combined tension and bending loads was resolved

through the analytical method with some rather surprising behavior, figure 10. When measured strains

from back-to-back gauge exceed the elastic limit, the bending strain may be several times larger than the

axial strain, but the stress is a small fraction of the axial stress. This model provides the basis for assess-

ing operational loads sensitivities. Because it is an often encountered condition and lengthy to solve, it

was programmed and included in appendix A.

Another surprise was the tee rosettes strain gauge conversion to stress expressions. While one of

the stress formulas was similar to the elastic conversion, the second, equation (I 10), was distinctly dif-

ferent. In substituting elastic properties into equations (109) and (110), both equations collapse to the
familiar elastic conversion formulas.

Analytical models presented are related to the skirt failure, other models may be similarly derived

as required. What began as a troubleshooting task evolved into an analytical technique waiting to happen.

To understand the inelastic behavior of specific structures, existing nonlinear material models were

modified to combine with existing strength models. As more models were derived, a common technique

emerged that was extendable to combined and multiaxial loading. When the technique was not only

applicable, but required, to convert strains from test data to stresses, the analytical loop was complete.

There are limits to its application, as there are to plasticity theory, but the technique is another option

friendly to a larger spectrum of analysts.
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APPENDIX A

NEWTON-RAPHSON METHOD

1. Combined Stresses, Bar Specimen

Two unknown variables. C and _ht. are implicit in the two equations (55) and (56). These vari-

ables may be determined throu_,h_ the Newton-Raphson method by. rearran,,in,,_ _. both equations in the
l+ollo\vin ,, functional fornl.

F1 - a(h-C)lvt, l-+21-,v ,
gM(b -F 1)

F 'f'F2- _;+_-7_(- +i-/+gL_ _J_l +* (b + 2) [fM

-M

and estimating starting values for these unknowns. Then.

Io ,l F< F<l
Fro+ L Jk'-gi-dM'_X_'"'+" oc.aCj = O, and F2,,+ La_MJ +k ocj'Xc = 0,

where

(A-It

(A-2)

(A-3)

A_:atl = _:,,,;i-_-'Mo • and AC = CI-C_ . (A-4)

Let:

OFi , G, - OF,
Gi - hem O_M

OF, L, - OF2
L j - OC " OC

YI =Fm , Y2 = F2o • (A-5)

then

Gi A_:,,t + LIA(-" = - YI

G2 _e,M+L2-_C = -- Y, ,

PRLaCEDING PAGE BLANK NOT FILMED

(A-6)
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and

K = GI
G2

Resulting variables,

Zl
gl

= Yi

Y2

Zl

L2
K9 (A-7)

8MI
gl

= /3MO---- , and
K

K9

Ci = Co---,
K

(A-8)

are iterated to desired tolerance,

ABSI _Mo- eM I <_ Tel.
8MO

(A-9)

PROGRAM, COMBINED PLASTIC AXIAL-BENDING LOADS (BAR SPECIMEN)
moment must be greater than zero

' INPUTS
M=7.5
P---40
H=.72
A=98
B=.22

BB=B+I
PH= P/(2*H*A)
EP=(ABS(PH))^(1/B)

'external applied moment, kip-in/in
' " axial load, kips/in

' plate half-thickness
'strength coeff, of mat'l

'hardening exponent of mat1

'strain caused by axial load

'estimate unknown variables
INPUT "estimate EM=";EM
INPUT "estimate C=";C

'strain caused by moment
%ending neutral axis from y=0, inch. 0<= -C<-H

' NEWTON-RAPHSON METHOD

J=0
START: QI=EM*.0011:Q2----C*.0011
CALL FUNCTION(M,P,H,A,B,BB ,F_.P,EM,C,F 1 ,F2)

DI=EM: D2=C: YI=FI: Y2=F2:EM=EM+Q1

CALL FUNCTION(M,P,H,A,B,B B,EP,EM,C,F 1 ,F2)
GI=(F1-Y1)/QI: G2=(F2-Y2)/QI: C=C+Q2:EM=D1

CALL FUNCTION(M,P,H,A,B,BB,EP,EM,C,F1 ,F2)

LI=(F1-Y1)/Q2:L2=(F2-Y2)/Q2

'trainer's rule
K=G I*L2-G2*L I

KI=YI*L2-Y2*LI
K2---G I* Y2-G2*Y I
EM=DI-KI/K
C=D2-K2/K
J=J+l
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PRINT "EM-",EM," C=",C
IF ABS((D1-EM)/D1)>.000001 GOTO START

'AXIAL- BEND PROFILE
OPEN"CLIP:" FOR OUTPUT AS #3

YS-H: YF=-H: NY=25
N-NY- I

DY=(YF-YS)/N
ET=0: ST={)
Y=YS
FOR I=ITO N

ET=EP+(Y-C)*EM/CH-C)
ST=A*((ABS(ET))^B)*SGN(ET)
SP=P/(2*H)

'ET=combinedstrain
'ST=combinedstress
'SP= AXIAL STRESS

WRITE #3,Y,ET,ST,EP,SP
PRINT Y, ET,ST,EP,SP

Y=YS+(I+I)*DY
NEXT I

CLOSE #3
STOP

SUB FUNCTION (M,P,H.A.B,BB,EP,EM,C,FI,F2) STATIC

R I=A*(H-C)/EM/BB
R2=EP÷EM
R3=EP-EM*(H+C)/(H-C)
R4=((ABSCR2))^BB)
RS=((ABS(RB))^BB)
R6=H+( (H.C)/(B+ 2 ) )* (EP /EM-(H+C)/(H-C) )
R7=H-((H-C)/(B +2))*(EP/EM+ I)

FI =RI*(R4-R5)-P
F2 =RI*(R4"R7+R5*R6)-M

PRINT EM, C

END SUB

2. Combined Stresses, Plate Specimen

The two unknown variables. C and eM, implicit in equations (80) and (81 ) may be solved by the

Newton-Raphson method. Rearranging both equations in the functional form as before,

Is

F3 = (h-C)[_3-04](13+ I)eM [--_] -N , (A-10)

F4= (h-C)Ial____Q_f_llh(h-C)F__N (h + C).]] _(h-C) Fe__N+_I_M. (A-I I)(13+l)6M 04 + +03 (B+2) L..

proceed with equations (A-3) through (A-9) above. A program used in section IV in this document
follows.
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PROGRAM, COMBINED PLASTIC AXIAL-BENDING LOADS ( PLATE SPECIMEN)

' INPUTS
M--10
P--40

'external applied moment, kip-in/in
' " axial load, kips/in

I-I--.72
SU=45.7
SE=26.3
EU=.04
E= 10500

B=LOG(SU/SE)/LOG (EU* E/SE)
A=SE/((SE/E)^B)
BE=I/B

'plate half-thickness
'max stress, ksi
'elastic limit stress, ksi
'max strain

'Young's modulus, ksi
'hardening exponent of mat'!

'strength coeff, of mat'l

SP= P/(2* H) 'applied axial stress, ksi

"Poisson's ratio

UUA=((SE/A)^BE)*E/SE
UA=.5*UUA+.3*(I-UUA)
'U--.5-(UA-.3)*S/E* ((A/S)^BE) 'poisson's ratio at any stress s

'plato coefficient
UXEL--.5-(UA-.3)*SE/E*((A/SE)^BE)
UXU=.5-(UA-.3)*SU/E*((A/SU)^BE)
GAEL-- I-UXEL^2

GAU= I-U-XU^2

R=LOG(GAU/GAEL)/LOG(SUISE)
Q=GAEL/(SEAR)
BP=B/(I+B*R)

'poisson ratio at elastic limit
'poisson ratio at ultimate

'plate coef at elastic limit
'plate coef at ultimate

'plate combined expo.

F_.P=(SP/A_BE 'sWain caused by axial load

'esmnate unknown variables
INPUT "estimate EM=";EM
INPUT "estimau_ C=";C

'strain caused by moment
'bending neutral axis from y--0, inch. 0<= -C<-H

' NEWTON-RAPHSON METHOD
J=0

START: QI=EM*.0011:Q2--'C*.0011:
CALL FUNCTION(M,P,H,A,B,B E,EP ,EM,C,B P,Q,F 1 ,F2)

D1--EM: D2---C: YI=FI: Y2=FR: EM=EM+Q1
CALL FUNCTION(M.P,H,A,B,BE,EP,EM,C,BP,Q,F 1,F2)

GI=(F1-Y1)/QI: G2=(F2-Y2)/QI: C--C+Q2:EM=D1
CALL FUNCTION(M.P,H,A,B,BE,EP,EM,C,BP,Q,FI,F2)

LI=(F1-Y1)/Q2:L2=(l_2-Y2)/Q2

'cramer'$ nllc
K=GI*L2-G2*L 1
KI=YI*L2-Y2"L 1

I*Y2-G2*Y 1

EM=D1-K1/K
C=D2-K2/K
J=J+l

PRINT "EM=',EM," C=",C
IF ABS((DI-EM)/DI)>.000001 GOTO START

'AXIAL- BEND PROFILE
OPEN"CLIP:" FOR OUTPUT AS #3
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YS=H: YF---H: NY=25

N=NY-I

DY--(YF-YS)/N

ET=0:ST=0
Y--YS
FOR I= I TO N

ET-- EP+(Y-C)*EM/(H-C)
ST--(((A^BE)/Q)^B P)*((ABS (ET))^BP)* SGN(ET)

'total strain vs thickness
'total stress vs thickness

WRITE #3,Y,ET,ST,EP,SP
PRINT Y, ET,ST,EP,SP

Y--YS+(I+ I)*DY
NEXT I

CLOSE #3

STOP

SUB FUNCTION (M,P,H,A,B,BE,EP,EM,C,BP,Q,F1,F2) STATIC
R I=( ( ( A ^BE)/Q)ABp)*(H-C)/EM/(BP + I )
R2=EP+EM

R3=EP-EM*(H+C)/(H-C)
R4-_((ABS(R2))^(BP+ 1))
R5=((ABS(R3))A(Bp+ 1))
R6zH+((H-C)/(BP+2))* (EP/EM-(H+C)/(H-C))

R7--H-((H-C)/(BP+2))*(EP/EM+ 1)

F1 =RI*(R4-R5)-P
F'2 =R I*(R4"R7+R5*R6)-M

PRINT EM, C

END SUB
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APPENDIX B

DISCONTINUITY STRESS MODEL

A model is required for determining local stress components on a fillet weld specimen caused by

an abrupt change in lateral displacement at the bonded interface. Induced inplane shear stresses, T,,,

should be zero at the top and bottom surfaces and at the midthickness, and the lateral normal stress, o-,,

should be zero at both surfaces. These boundary conditions may be satisfied by inventing a dummy

interfacing element having the same thickness as the fillet and subjecting it to a uniform external load. q,

over a suitable length, d. The load, q, induces a uniform lateral strain, _,, across the thickness except at

the interface, where the stresses and displacements are matched with the fillet element.

Since the dummy element is used only to simulate boundary conditions at the weld bond, stress

distributions for .v < d are not relevant to the problem. Therefore, the lateral loading, q, and axial load-

ing, o-,, will be related to the common interface displacement to eliminate the lateral load from the dis-

continuity stress analysis in section V. It follows that the origin of the .v-axis will be shifted in the text

from the position shown in figure B-1 to a point on the interface.

Y

d
Dummy I_,_

\,+q++

Weld Interface _t

w I

{ii{ili!ii!i{{iiiiiiiii{iiiiilgiiiiiiii{ii{iiiii!ii !iii {-",..x

Figure B-I. Weld interface model.

Figure B- 1 describes a simply connected contour with inplane forces which makes it independent

of material constants. The geometry and the discontinuous dummy loading q are symmetrical about the x-

and v-axes. This is a classical problem [8] applicable to the generalized plane stress method. It consists of

integrating the compatibility equation,

a4_ +2 34_ + 34_ - 0

Ox4 ax2ay 2 oy 4
(B-l)

where Airy's stress function, cD, is defined by three components derived from equilibrium:

32_ 32_ a2_
or., - cry, - or,.,. - (B-2)

Oy2 ' " 3x 2 ' " 3xOy
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Equation (B-l) is of the form _(x,y) = XY whose solution is well known to be

• (x.y) = (Ci cos ,kx+ C-, sin kv) (C3 cosh by+C4 sinh hv+Csy cosh hy+Cc, y sinh Xy) (B-3)

where CI .... C 6 are arbitrary constants and h = m'rr/L for rn = 1,2,... Substituting equation (B-3) into

(B-2), satisfying stress boundary conditions

"r,.,. - oz_ - 0 atx = _+tl and v = _+L ,
" OxOy

and allowing that sin h__ to vanish for a symmetrical loading of

n

Q = A + _ B cos l-Im._..__.__
I L

(B-4)

at y = -h, determined the constants to be

CL = ! and C, = Ca = C5 = 0 .

Stress components of equation (2) become:

o', - o=_b - 2Q _, cos Kx [(M1 cosh Ml-sinh M1) cosh hv-(sinh hh) hy sinh by]
• 0y 2 2h.h + sinh 2hh

o,. - o2_b - 2Q _ cos kx ![(sinh hh) h_,' sinh hv- (M7 cosh M_ + sinh hh) cosh h),]
• ax z 2hh + sinh 2hh " "

a2_ - 2Q _ sin kx I[(M1 cosh hi1) sinh hv-(sinh M_) hv cosh by]. (B-5)
'r.,::. = OxOy 2kh + sinh 2kh " "

Dummy uniform tension loading terms, A and B, of equation (B-4) are found in the usual way:

where A = qd/L, and

L d

f a =f
-L --d

B-2f fL 2qq cos hx dr+ (0) - sin h,l
L 0 d hL "

(B-6)
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EvaluatingA for integers 0 < ;11< I in each stress component as _ approaches zero torv = 0, A becomes

zero for or, and r,,., and A/2 for or,.. Let mw= e_ and

;kd = tad/L = taT, kr = _/L = taX . _.tI = tah/L = ¢xH , ;_v = tav/L = taY . (B-7)

Substituting the evaluated A, equation (B-6), and identities (B-7) into (B-5) gives the discon-

tinuity stress factors in nondimensional form,

o, _ 4_] sin taT cos taX
q (2tall+ sinh 2tall) ta

[(¢xH cosh tall- sinh etH) cosh ¢xY-(sinh tall) taY sinh taY)]

% - T+4 _ sin taT cos taX
q (2tall + sinh 2tall) ta

[(sinh tall) taY sinh taY-(tall cosh ¢xH + sinh tall) cosh taY)]

"r._y _ 4 _ sin taT sin taX [(tall cosh tall) sinh taY-(sinh tall) taY cosh taY)] .
q (2tall + sinh 2tall) ta

(B-8)

Discontinuity stress factors distribution over the length and half thickness are calculated from

equations (B-8) and plotted in figure B-2 for m = 4 which was limited by program overflow. Discon-

tinuity stress factors distribution at the bond interface are determined from equation (B-8) by letting taX

= exT. Recognizing that czH is large so that sinh tall = cosh o_H, and 2tall is small, discontinuity stresses
at the interface are

O.t
i

q 4_'sintaTc°staT[e-"tt]I(H-I)1 cosh e_Y-Y sinh taYl

O_,

-- 0"): m

q E ¢-+/T+ 4 _ sin aT cos taT [e -'tt] sinh ¢xY- +
I cosh taYl

axy

__ O'xy __

q

Itl

4Y, sin taT sin taT [e-"H]IH sinh taY- Y cosh c_Y] .
I

(B-9)

Stress component factor distributions of equation (B-9) are plotted in figure B-3.
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Figure B-2. Discontinuity stress component factors.
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Figure B-3. Stress factors distribution on bond interface.

' PROGRAM MATERIAL DISCONTINUITY, FIGURE (16)

' STRESS FACTOR @ ULT STRESS DISTRIBUTION ALONG Y-AXIS INTERFACE

' HI=M, H2=d/l, Yl=y/I, X2=x/l, SX'Y=shear, SX=axial, SY=norm. t/w = HI/(l-d)
OPEN "CLIP:" FOR OUTPUT AS #2

'gco input
H2=.2
HI---4.6
MI= 5

' material INPUTS
SU1=58 'max stress PLATE, ksi
SU2=48.6 ' DO WELD
SE1=32 'elastic limit stress PLATE, ksi
SE2=26.5 ' DO WELD
EUI=.04 'max PLATE strain
EU2=.04 ' DO WELD
E=I0500 'Young's modulus, ksi
EEI=SE1/E 'elastic limit
EE2=SE2/E

' calculated material properties
BI=LOG(,SUI/SEI)ILOGCEUI=FJSEI) 'hardening exponent of PLATE mat'l
AI=SE1/((SE1/E)^B 1) 'strength coeff, of mat'l
B2=LOG(SU2/SE2)/LOG(EU2*FJSE2) 'hardening exponent of WELD mat'l
A2=SE2/((SE2/E)AB2) 'strength coeff, of mat'l

EK2=EU2/3
SKI=AI*EK2^B 1
SK2=A2*EK2^B2

BBI=LOG((SUI-SE2)t(SK1-SE2))
BI]I =BB I/LOG((EU1-EE2)/(EK2-EE2))
AA I=(SK 1-SE2)/((EK2-EE2)^BB 1)
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BB2=LOG((SU2-SE2)/(SK2-SE2))

BB2=B B2/LOG((EU2-EE2)/(EK2-EE2))
AA2=(SK2-SE2)/((EK2-EE2)^B B2)

'poisson's ratio
UXUI=.5-.2*SU1/E*((A1/SU1)^(I/B1)) 'poisson's ratio OF PLATE at IILT stress
UXEL1---.3

UXU2=.5-.2*SU2/E*((A2/SU2)^(1/B2)) 'poisson's ratio OF WELD at ULT stress
UXEL2=.3

F 1=LOG(UX"U 1/UXEL 1)/LOG((SU1/SE1)^( 1/B 1))
G 1=. 3/((SE 1/A 1)^('F1/131 ))
F2=LOG(UXU2/UXEL2)/LOG((SU2/SE2)^(1/132))
G2--.3/((SE2/A2)^(F2/B2))

UXK=.3+(UXU2-UXEL2)I3
SKUI=AI*(UXK/G I)^(B I/FI)
SKU2=A2*(UXK/G2)^(B2N2)

FF 1=LOG((UXU 1-UXEL2)/(UXK-UXEL2))
FFI=FF1/LOG((SU1-SE2)/(SKU1-SE2))
GG 1=(UXK-UXEL2)/((SKU 1-SE2)^FF1)

FF2=LOG ((UXU2-UXEL2)I(UXK-UXEL2))
FF2=FF2/LOG((SU2-SE2)I(SKU2-SE2))
GG2=CUXK-UXEL2)/((SKU2-SE2)^FF2)

RIS=O: R1F=I! : NR1--41 : DRI=(R1F-RIS)/(NRI-1) 'Y=0 to 1
FOR I=1 TO NR1

RI=R1S+(I-1)*DR1 ' R!=Y/H
YI=RI*H1 'y/l._%h/L
GOSUB T2SUB

WRITE #2,R 1 ,T2(1),T2(2).T2(3),T2(4)
PRINT R I ;T2(1);T2(2);T2(3);T2(4)

NEXT I
CLOS:, #2

STOP

T2SUB:
SX--0
SY--0

SXY--0
SK--0

FOR M=I TO MI
A=M*3.1416
AH2=A*H2
AX2=AH2
AHI=A*HI
AYI-_A*YI

EYI=EXP(AYI)

EYNI=EXP(-AYI)

SHYI=(EYI-EYNI)*.5

CHYI=(EYI+EYNI)*.5

EHI=EXP(AHI)

EHIN--EXP(-AHI)
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SHI"I1 =(EH 1-EH 1N)*.5
CHH1--(EHI+EH1N)*.5

E2H=EXP(2*AH1)
E2HN=EXP(-2*AH1)
SH2H1--(E2H-E2HN)*.5

CI=SIN(AH2)*EH1N

CX=(H1-1/A)*CH'Y 1-Y 1*SHY1
CX=CX*CI*COS(AX2)
SX=SX+CX

CY=Y l'SHY I-(H1 + 1/A)*CHY 1
CY---CY*C I*COS(AX2)
SY=SY+CY

CX'Y=HI*SHYI-YI*CHY 1

CXY=CXY*CI*SIN(AX2)
SXY=SXY+CXY

CK=H I*CI-IH 1-(H1 +2/A)* SI-IH 1
CK--'CK*C I*COS(AX2)/AH1

SK--SK+CK

NEXT M

K2_ II(H2+4*SK)
QI=I-(GGI*(AA2A(I/BB2)))/(GG2*(AAI^(I/BB I)))
Q I--Q I*K2*GG21(AA2^(1/13 B2))

QI=QI/(I+(A2^(I/B2))/(AIA(I/B I)))
K3=A2*Q l^B2

'EQUATION V-16

"EQUATION V- 19

SSX--.4*SX*K3

SSY=ffI2+4*SY)*K3
SSXY--4*SXY*K3

K4-.-K'FF2* B B 2+ 1)*B2/BB2
K5=((SU2-SE2)AK4)/SU2

T2(1)=SSX* K5 'cqus V-22
T2(2)=SSY*K5
T2(3)--.SSXY*K5
T2(4)_(l+(T2(1))^2+T2(2)A2-(l+T'2(1))*T2(2)+3*T2(3)^2)^.5 'equ V-23

RETURN
END

5"l





APPENDIX C

MATERIALS ANALOG

There are three noble disciplines from which mechanical behavior of most materials may be

modeled: elasticity, viscosity, and plasticity. Their responses are unique to their content of force, dis-

placement, and time variables. These three basic disciplines may be combined (fig. C-1) to further define

mechanical behavior of more complicated, though common, engineering materials.

Viscoelasticity is emerging into a discipline of its own. It has borrowed from the large body of

elasticity principles and coupled them with time-displacement behavior of fluids to represent polymer

material behavior.

Bingham materials are represented by visco-plastic behavior. Most common of these materials

are wet paints and printer's ink. Plastic-elastic behavior is inherent to most polycrystalline materials

stressed beyond the elastic limit.

Friction
Block

_F

NIl
dr

_F

/

/
/

/

/
/

/
/

/

Plastic 1Elastic

Spring Model
dr

' ' V/ \

\ E
\

\
\' dr

I Visco- 1Plastic

_F

NI_
G

Visco- 1 _Elastic

\
\

\
\

\

Dashpot

Figure C-I. Mechanical representation of common engineering materials.
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